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Preface

The eighth edition of Rockwood and Green’s: Fractures in Adults 
continues with the changes that were instituted in the seventh 
edition. In this edition there are two more chapters and 61 new 
authors drawn from three continents and 11 different coun-
tries. In addition, many of the new authors represent the next 
generation of orthopedic trauma surgeons who will be deter-
mining the direction of trauma management over the next two 
or three decades.

Orthopedic trauma continues to be an expanding discipline, 
with change occurring more quickly than is often realized. 
When Drs. Rockwood and Green published the frst edition in 
1975, there were virtually no orthopedic trauma specialists in 
most countries, fractures were usually treated nonoperatively, 
and mortality following severe trauma was considerable. In one 
generation the changes in orthopedic surgery, as in the rest of 
medicine, have been formidable. We have worked to incorpo-
rate these changes in this edition. There is expanded coverage 
in this edition of the inevitable complications that all orthope-
dic surgeons have to deal with, and we have included chapters 
on geriatric trauma and the psychological aspects of trauma. 
The other area of orthopedic trauma that is expanding quickly, 
particularly in the developed countries, is the treatment of 
osteoporotic (or fragility) fractures. These fractures are assum-
ing a greater medical and political importance, and orthopedic 
implants are now being designed specifcally to treat elderly 
patients. It is likely that this trend will continue over the next 

few decades; many of the chapters in this edition refect this 
change in emphasis.

The changes in the eighth edition include major changes in 
its chapter structure. Each of the clinical chapters now follows 
a specifc template beginning with the physical examination, 
classifcation, and additional studies used in the diagnosis of 
each problem. This is followed by a description of the outcome 
measures used to evaluate patients for the specifc injury they 
sustained. The indications and contraindications for each treat-
ment method, including nonoperative and operative methods 
are highlighted in tables, as are the technical aspects of the 
surgeries. Old favorites such as pitfalls and problems are also 
listed in tables with solutions. Finally, the author’s preferred 
treatment is now presented in the form of an algorithm, allow-
ing the reader to understand the thought process of the expert 
writer in deciding on the treatment for the multiple subtypes 
of injuries described in each chapter. We believe that this will 
make it easy to get the most out of each chapter.

Finally, we are proud to introduce a new electronic format 
that should allow for easier access across platforms, a change 
that is overdue! Video supplementation is also available for the 
majority of the clinical problems.

We are indebted to the efforts of the experts who have taken 
the time to share their knowledge and experience with our 
broad readership and hope that this new edition will contribute 
to the care of patients.

Charles M. Court-Brown, MD, FRCS Ed (Orth) 
James D. Heckman, MD 

Margaret M. McQueen, MD, FRCS Ed (Orth) 
William M. Ricci, MD 
Paul Tornetta III, MD
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S E C T I O N ONE

General Principles

1

BIOMECHANICS OF FRACTURES 
AND FRACTURE FIXATION

INTRODUCTiON TO BiOMECHANiCS OF  
FRACTURES AND FRACTURE FiXATiON

“Biomechanics” is a complex and encompassing term that 
applies to many aspects related to orthopedic surgery, and 
specifcally to fractures and fracture fxation. The application 
of biomechanical principles and concepts is essential to under-
stand how the fracture occurred, how to best treat the injury, 
and how to avoid mechanical failures of the fxation construct. 
One must frst understand the fundamental terms and con-
cepts related to mechanical physics. This establishes the foun-
dation that will be used to apply these concepts to the feld of 
orthopedic surgery. The biomechanical properties of bone as 
well as the biomechanics of fracture healing are also essential 
to understand how bone is injured and how to best restore its 
function. Finally, understanding the biomechanical properties 
of common implants and failures seen with their application 
helps the clinician to a thorough understanding that aids in  
patient care.

In the study of biomechanics as it relates to fracture fxa-
tion, the fundamental mechanical question remains: Is the fxa-
tion system stable and strong enough to allow the patient early 
mobility before bony union is complete? This must occur with-
out delaying healing, creating bone deformity, or damaging the 

1

1

implant, and yet be fexible enough to allow transmission of 
force to the healing fracture to stimulate union. The common 
adage in orthopedics is that, “Fracture healing is a race between 
bony union and implant failure.” A thorough understanding 
of the biomechanical concepts as they relate to bone, fracture, 
and implants is essential for the proper treatment of patients 
with fractures.

BASiC CONCEPTS

Before describing the performance of fracture fxation systems, 
some basic concepts used in biomechanics must be understood. 
A force causes an object to either accelerate or decelerate. It has 
magnitude (strength) and acts in a specifc direction, which is 
termed a vector. However complex the system of forces acting 
on a bone, each force may be separated into its vector compo-
nents (which form a 90-degree triangle with the force). Any 
of several components, acting in the same or different direc-
tions, can be added to yield the net or resultant force. As seen 
in Figure 1-1, a simplifed example of the hip joint shows that 
the forces acting about the hip include the body weight, joint 
reactive force, and the hip abductors. As the hip in this example 
is at rest, the net force must be zero; therefore, if the body 
weight and hip abductor forces are known, the joint reactive 
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•• BiOMECHANiCS OF INTACT AND  
HEALiNG BONE  10

•• BiOMECHANiCS OF BONE FRACTURE  14
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Avoiding Mechanical Problems with Fracture  

Fixation Devices  17
Biomechanical Aspects of Fracture Fixation in  

Specific Locations  32
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2    Section ONE  General Principles: Basics

force can be calculated using the x and y components of all 
the forces. Also, understanding the forces about a fracture help 
the surgeon to understand the deforming forces, the reduction 
maneuvers, as well as the proper application of implants to best 
stabilize the injury. Both the design of the implants as well as 
the application by the surgeon must be done with these con-
cepts in mind so that they can withstand the mechanical loads 
applied without failure.

The two major loads acting on a long bone are those that 
cause it to displace in a linear direction (translation) and those 
that cause it to rotate around a joint center. Muscles typically 
cause a bone to rotate (e.g., the biceps causes the forearm to 
fex and supinate, the anterior tibialis causes the foot to dorsi-
fex). When a force causes rotation, it is termed a moment and 
has a moment arm. The moment arm is the lever arm against 
which the force acts to cause rotation. It is the perpendicular 
distance of the muscle force from the center of rotation of the 
joint. As shown in Figure 1-2, the moment or rotary force is 
affected not only by the magnitude of the force applied, but 
also by its distance from the center of rotation. In the example, 
two moments act on the outstretched arm. The weight carried 
in the hand as well as the weight of the hand and forearm rotate 
the arm downward, while the balancing muscle force rotates 
the forearm upward. Equilibrium is reached by balancing the 
moments so that the forearm does not rotate and the weight 
can be carried. Note that to achieve this, the muscle force must 
be eight times as large as the weight of the object, forearm, and 
hand because its moment arm or distance from the center of the 
joint is only one-eighth as long.

CBA

H
A

JR
F JR

F

H
A

BW

BW

AFy

AFx

FIgURE 1-1  The force vectors acting on different parts of the body are a culmination of muscle, ten-
dons, ligaments, and external forces. A: A simplified example of the force vectors acting on the hip joint. 
HA, hip abductors; BW, body weight; JRF, joint reactive force. B: Using the x and y vector components 
of the forces about the hip the joint reactive force (JRF) can be calculated because if the hip is at rest, 
the sum of all the forces should equal zero. AFy (vertical component of HA force) AFx (horizontal com-
ponent of HA force). C: Understanding the forces that are applied about a fracture can help the surgeon 
understand the deforming forces and assist in reduction and fixation strategies.

Biceps

W

W

Radius

Forearm

3 cm

Biceps force
(vertical component only)

10 kg

24 cm

F2 = 10 N
F1 = Biceps force
D2 = 24 cm
D1 = 3 cm

Humerus

FIgURE 1-2  In this simplified example of a free body diagram, the 
outstretched arm is a lever and is at rest. The rotational force, or the 
moment, is centered about the elbow. This moment is defined as 
the product of the weight (object + forearm + hand) (F2) and the dis-
tance from the elbow (d2). This moment must be counteracted by a 
moment in the opposite direction. In this example the vertical com-
ponent of the biceps force (F1) is the counteractive force. The lever 
arm of this force is the distance from the elbow to the insertion of 
the biceps (d1). The biceps force is calculated from 10 kg × 24 cm = 
F1 × 3 cm. Thus F1 = 80 N. The biceps force is much greater than the 
weight of the object, arm, and hand because its lever arm is smaller.
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Chapter 1 Biomechanics of Fractures and Fracture Fixation    3 

The basic forces—compression, tension, torsion, and 
bending—cause the bone to behave in predictable ways. A 
compressive force (Fig. 1-3) results in shortening the length of 
the bone, whereas tension elongates it. Torsion causes twisting 

of a bone about its long axis, whereas bending causes it to bow 
at the center. When these forces are great enough to cause the 
bone to fracture, it results in characteristic fracture patterns that 
can be recognized on radiographs. Understanding these forces 

Unloaded Compression

Oblique
fracture

Spiral
fracture

Greenstick

Transverse
butterfly

Burst
fracture

Transverse
fracture

Tension Torsion Bending

FIgURE 1-3  Basic forces: Unloaded; compression shortens length and can lead to an oblique fracture 
line or comminution; tension can lead to a transverse fracture. Torsional forces usually cause a spiral 
pattern. Bending forces cause compressive forces on one side and tensile forces on the other. This 
can result in a transverse fracture on the tensile side and comminution in a classic butterfly pattern on 
the compressive side. Bending forces can also result in incomplete or “greenstick” fractures in the 
pediatric population.
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4    Section ONE  General Principles: Basics

= Elastic modulus

= Stiffness
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FIgURE 1-4  The stress is defined as the force acting on a surface 
divided by the area over which it acts. Strain is the change in the height 
or length of the object (displacement) under load divided by its original 
height or length. Stiffness is defined as the slope of a force versus 
displacement graph. Elastic modulus is the corresponding slope, but 
of a stress versus strain graph. Note the corresponding colors.

can help to understand the circumstances of the forces that 
occurred at the time of the fracture. Compressive forces can 
cause oblique fracture lines or can result in comminution and 
fragmentation of the bone. Tensile forces usually cause trans-
verse fracture lines, whereas torsion can cause spiral fractures. 
Bending forces cause compressive stress on one side and tensile 
stress on the other side. Bending forces can also cause plastic 
deformation of immature or fexible bone or result in partial 
fractures. These partial fractures are also known as “greenstick” 
fractures and are usually seen in the pediatric population. In a 
more rigid bone, the tensile forces result in a transverse fracture 
line and the compressive forces cause comminution, usually in 
the characteristic butterfy fragment. In many cases an injury is 
caused by a combination of these forces and the fracture pat-
tern may have a combination of patterns.

Stress, as shown in Figure 1-4, is simply the force divided by 
the area on an object over which it acts. This is a convenient way 
to express how the force affects a material locally. For example, 
when an equal force (hammer blow) is applied to both a sharp 
and a dull osteotome, the sharp osteotome will concentrate the 
same force over a smaller surface area than a dull osteotome 
because of the sharp edge. Therefore, the sharp osteotome will 
create a greater stress at the osteotome–bone interface, resulting 
in cutting of the bone. Just as stress is a normalized force (force 
per unit area), changes in length can also be normalized. Strain 
is simply the change in height or length that a material under-
goes during loading, divided by its original height or length. If 
two plates of different lengths are both subjected to loads that 
lengthen the plate by 1 cm, the shorter of the two plates will 

be subjected to more strain as change in length is spread over a 
shorter distance than it is for the longer plate.

Mechanical testing is used extensively to analyze the prop-
erties of different constructs as well as new implant designs.67 
The testing usually consists of a natural or synthetic fractured 
bone fxed with a certain implant in different confgurations. 
This construct is then loaded into an apparatus that applies a 
specifc load in either a constant or cyclic manner. Sensors can 
measure the forces applied to the bone as well as any deformity 
or eventual failure (Fig. 1-5). Depending on the purpose of the 
experiment the data can be collected measuring the structural 
properties of the bone–fxation construct; that is, the properties 
of the fxation device and the bone combined. Alternatively, the 
data can measure the material properties which relate to the prop-
erties of the substances that make up each component (bone, 
stainless steel, titanium). In this example, the material properties 
of the plate are being tested using a fracture model. The corre-
sponding graph represents the data measured in this experiment 
plotted on a stress–strain graph. The force and displacement 
are measured and normalized to stress and strain. The initial 
deformation is termed elastic because when the load is removed, 
the plate will return to its original shape. This is represented by  
the linear portion of the graph, termed the elastic region. At some 
load, however, the construct becomes overloaded, entering the 
plastic range. If the load is released after loading in the plastic 
range but before failure, some permanent deformation remains in 
the construct. The point at which elastic behavior changes to 
plastic is termed the yield point. As previously mentioned, the 
slope of the stress–strain curve is the elastic (Young’s) modulus. 
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The area under the stress–strain curve is termed the strain 
energy which is the energy absorbed. Toughness is the amount 
of energy that a material can absorb before failure.

The elastic range represents the working range for the fxa-
tion construct. In this region the plate is able to withstand the 
forces applied to it without losing its shape. The yield point 
defnes the safe maximum functional load before the plate 
is permanently deformed. A third very important property, 
fatigue, will be discussed later.

Note that a fxation construct may have different yield points 
and stiffnesses for loads acting in different directions. An example 
is a half-pin external fxator construct applied to a tibia, with the 
pins oriented anteriorly–posteriorly. The stiffness is much greater 
in anterior–posterior (fexion/extension) bending than medial–
lateral (varus/valgus) bending for this construct. Another property 
to consider is the work done in deforming a fxation construct. The 
product of the force applied and the distance the construct bends 
is defned as the work done, and is represented by the area under 

Materials testing machine

Loaded Unloaded

Force
cell

Table

Crosshead
Displacement
transducer

Bone–implant
construct

Support

Setup for testing construct stiffness

Original
shape

Elastic
region

Plastic
region

Permanent
deformation

Slope = Young’s modulus elasticity

Elastic
region

Plastic
region

Ultimate strength

Breaking point

Stress
(Pa)

Yield point
(proportional limit)

Strain

FIgURE 1-5  Top left: A fixation construct setup in a mechanical testing machine. In this example, a 
long bone is fixed with a plate and subjected to bending. Top right: The construct during loading in 
the elastic region and plastic region. Bottom: The resulting measurements from the testing machine, 
which measures stress and strain at the point of the applied load. The graph demonstrates the elastic 
region, in which the plate acts like a spring, returning to its original shape after the load is released; 
the plastic region, in which the plate may have permanent deformity; and the failure load, in which 
the plate fails. The area beneath the curve (pink area) is the toughness of the material, or the amount 
of energy that a material can absorb before failure.
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6    Section ONE  General Principles: Basics

	 TabLE 1-1	 Basic Engineering Properties of Common Biologic and Implant Materials

Material
Ultimate Strength 

Tensile (MPa)
Ultimate Strength 
Compressive (MPa)

Yield Strength 0.2% 
Offset (MPa)

Elastic 
Modulus (MPa)

Muscle 0.2

Skin 8 50

Cartilage 4 10 20

Fascia 10

Tendon 70 400

Cortical bone 100 175 80 15,000

Cancellous bone 2 3 1,000

Plaster of Paris 70 75 20

Polyethylene 40 20 20 1,000

PTFE Teflon 25 500

Acrylic bone cement 40 80 2,000

Titanium (pure, cold worked) 500 400 100,000

Titanium (AI-4V) (alloy F 136) 900 800 100,000

Stainless steel (316 L) (annealed) >500 >200 200,000

Stainless steel (cold worked) >850 >700 200,000

Cobalt chrome (cast) >450 >50 20,000

Cobalt chrome (wrought, annealed) >300 >300 230,000

Cobalt chrome (wrought, cold work) 1,500 1,000 230,000

Super alloys (CoNiMo) 1,800 1,600 230,000

(Ultimate tensile strength or maximum force in tension, yield strength at 0.2% offset, the strength at which the strain in the material [change in length/original length] is 
0.2%, a usual standard for metals, elastic modulus, or stress/strain.)

the force–displacement graph of Figure 1-4. A material may be 
fexible and tough (e.g., rubber, or a child’s bone that deforms but 
is diffcult to break) or stiff but brittle (e.g., glass, elderly bone), if 
it cannot absorb much deformation without fracturing.

The factors that govern stiffness and yield point are the 
material from which the fxation device is made and its shape. 
A construct made of higher elastic modulus materials will be 
stiffer (e.g., stainless steel is stiffer than titanium) (Table 1-1). 
The stiffness of a construct is found by dividing the force 
applied by the deformation that the construct exhibited. The 
elastic (or Young’s) modulus is determined by dividing the stress 
applied by the resulting strain (Figs. 1-4 and 1-5). The moduli 
of some common orthopedic materials are given in Table 1-1. 
As shown, the elastic modulus of titanium alloy is about one-
half that of stainless steel; so, given two plates of the same size 
and shape, the titanium plate has about one-half the stiffness of 
the stainless steel plate. This can be important to consider when 
using new devices made of different materials.

Another concept is how the shape and size of an implant 
infuences the load it can support. As shown in Figure 1-6, a 
typical plate used in fracture fxation is wider than it is thick. 
Thus, the plate is actually stiffer when the load is placed against 
the edge rather than the broad surface of the plate. This is 
because when the load is applied on the edge of the plate, the 
material of the plate resisting the load is distributed further 
away from the center (note that in this example, the mate-

rial of the plate did not change, just its orientation relative to 
the load applied). This concept of distribution of material is 
refected in the shape property, moment of inertia. The moment 
of inertia provides a measure of how the material is distributed 
in the cross section of the object relative to the load applied 
to it. The farther away the material is from the center of the 
beam, the greater its stiffness. Steel I-beams were developed to 
take advantage of this concept; that is, gaining greater stiffness 
for the same amount of material. For solid cylindrical objects 
like rods, pins, or screws, their stiffness is related to the fourth 
power of their radius. As shown in Figure 1-6, for rods made of 
the same materials, a 16-mm diameter intramedullary (IM) rod 
is 1.7 times as stiff as a 14-mm rod ([8/7)4 = 1.7]).

A third important property of a fracture fxation construct 
is its ability to resist fatigue under cyclic loading. Load can be 
applied that remains below the yield point of the construct, 
yet creates a crack that progressively grows. This lowers the 
yield point of the material and the local stresses will eventually 
exceed the yield point and the construct will fail (Fig. 1-7). 
Some materials have an endurance limit such that they can 
support a certain level of load indefnitely without failure. An 
important aspect of fatigue performance of a fxation construct 
is the effect of a stress riser. In completely uniform materials, 
the stresses will be almost identical throughout the material. 
But typical fxation devices have holes, screw threads, and other 
features in which the shape changes and leads to a change of 
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FIgURE 1-6  The concept of moment of inertia or the effect of the 
geometry of an object on its stiffness. Top: Looking at a typical plate 
used in fracture fixation, when the load is applied on the broader sur-
face the plate is less stiff than when the load is applied to the narrower 
edge. This is because the distribution of the material is farther from the 
load applied. Bottom: The moment of inertia is a term used to describe 
how the material is distributed within an object. For a solid rectangu-
lar object such as a plate, the moment of inertia (I) and the stiffness 
increase directly with the width (b) of the plate and the cube of its 
height (h). For a solid cylinder, such as a pin or a screw, the moment 
of inertia increases with the fourth power of its radius (r). Therefore a 
16-mm diameter IM rod is 1.7 times as stiff as a 14-mm rod, and 2.3 
times as stiff as a 13-mm rod, if all the rods are made of the same 
material. For a hollow cylinder such as an intramedullary nail, the radius 
of the inner diameter (ri) is subtracted from the radius of the outer 
diameter (ro). The moment of inertia still increases by the fourth power.

Beam loaded in bending

Crack appears on tensile side

Crack closes with release of load

Crack grows larger with next load cycle

FIgURE 1-7  A stress concentrator is a region of an object in which 
stresses are higher than in the surrounding material. Taking the 
example of a fracture plate subjected to bending, the bottom sur-
face elongates under load. In the region of highest tensile forces, 
a scratch starts to grow into a crack that closes when the load is 
released, then reopens slightly larger with the next load cycle, even-
tually growing to a point at which the plate fails. Crack growth is 
accentuated by stress corrosion, poor bone-to-bone contact at the 
fracture, and by loads applied by heavier patients.

FIgURE 1-8  A stress riser at the end of a fracture construct can 
cause problems if it is in a region of high stress. In this example, a 
femoral shaft fracture is fixed using a lateral plate. If the end of the 
plate is in the high-stress subtrochanteric region, there is a risk that 
the stress riser can contribute to a periprosthetic fracture. To avoid 
this, a longer plate can be used to bypass the high-stress area.

the material properties. It is the transition points which create 
a stress riser. One must also take into account the interface 
at the end of a fxation construct. The end of the plate or rod 
creates an abrupt transition between the metal and bone cre-
ating a stress riser. Although this cannot always be avoided, 
placing the end of the implant in a high-stress area such as the 
subtrochanteric region of the femur can lead to periprosthetic 
fractures (Fig. 1-8). These fractures can be secondary to another 
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8    Section ONE  General Principles: Basics
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FIgURE 1-9  A: Illustration of crevice corrosion, 
with a local galvanic cell caused by an impurity in 
the surface of a plate and ions, M+, being released, 
resulting in loss of material and formation of a crevice.  
B: Stress corrosion occurs by a local galvanic cell 
setup between the material at the tip of the crack, 
which just opened and has not oxidized, and the 
remaining oxidized surface of the plate. The released 
ions enhance crack growth occurring from loading. 
C: Fretting corrosion caused by the loss of the oxide 
layer on the surface of a plate caused by rubbing of 
the base of the screw against the plate. D: Galvanic 
corrosion around a scratch or pit in the plate.26

traumatic event or can be caused by cyclical loading and fatigue 
failure at the stress riser. Thus, in this situation a longer plate 
should be used to bypass the high-stress area, particularly in 
areas of poor bone quality.

A scratch can also cause a local small stress concentrator. 
When immersed in the saline environment of the body, stress 
corrosion can occur. Stress corrosion combines the effects of 
the local growth of the crack resulting from cyclic loading with 
galvanic corrosion. A galvanic cell describes a local environment 
in which electrons fow from the more negative to the more 
positive material when immersed in a liquid conductor (saline, 
in this case) (Fig. 1-9). Material is actually removed from the 
more negative electrode, such as the surface of the plate during 
galvanic corrosion. In a fxed fracture, the dissimilar materials 
are the surface of the plate (e.g., stainless steel), which creates 
an oxide surface coating, and the same material exposed by the 
fatigue crack that has not yet developed the oxide flm. The 
conductive fuid is the blood and saline found in the surround-
ing tissues. Galvanic corrosion can accelerate the failure of an 
implant, even when the implant is loaded well below its yield 
point, by increasing the rate at which the crack grows. This 
occurs because in addition to the mechanical propagation at the 

site of the crack, material at the crack is being removed by the 
corrosion process. Another mechanism of corrosion, termed 
fretting, results when the surfaces of two implants rub together, 
such as the head of a screw against the surface of the plate 
through which it passes. Crevice corrosion, which is not com-
mon in modern orthopedic materials, results from small gal-
vanic cells formed by impurities in the surface of the implant, 
causing crevices as the material corrodes.26

Another basic property is viscoelasticity (Fig. 1-10). Biologic 
materials do not act as pure springs when load is applied to 
them. A spring deforms under load and then returns to its 
original shape when the load is released. For example, if a load 
is applied to a tendon, and the load is maintained for a period 
of time, the tissue will continue to deform or creep. This is 
the basic principle behind stretching exercises. Under a con-
stant load, a metal fxation plate will deform and remain at 
that deformation until the load is removed (elastic behavior). 
In contrast, the tendon both deforms elastically and creeps, 
exhibiting both viscous and elastic behavior. This property has 
important implications for certain types of fxation, especially 
those that rely on loading of soft tissues, such as in certain types 
of spinal fxation (to be discussed later).
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FIgURE 1-10  Viscoelastic response in a biologic tissue can be 
explained by considering and combining the properties of two 
devices, a simple spring and a fluid-filled syringe. The elastic or 
spring component instantly compresses when a load is applied to 
it. When the load is released, the spring returns to its original shape. 
When a load is applied to the viscous component, represented by 
the syringe, fluid is forced out of the needle. If the load is released, 
the plunger does not return, but remains in its final position, rep-
resenting the creep property of the tissue. Further, if the force is 
applied to the plunger more rapidly, there is greater resistance to 
motion, explaining the increased stiffness of tissue to increased 
rates of loading. Combinations of these simple components can be 
used to describe the mechanical properties of biologic tissues.
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F = Flow through restrictions
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FIgURE 1-11  The trabecular bone possesses some features of 
the spring and syringe viscoelastic model described in Figure 1-10, 
although it should be appreciated that this is an idealized model. 
The trabecular structure acts as the spring element. At higher load-
ing rates, the interstitial fluid resists flowing through the trabecular 
spaces, causing increased internal pressure and greater bone stiff-
ness. This anatomical feature allows vertebrae and the metaphyseal 
ends of long bones to resist dynamic loads caused by rapidly applied 
forces.34

A second characteristic of viscoelastic behavior is loading 
rate dependence. In simple terms, stretching a soft tissue can be 
thought of as stretching two components, an elastic one and a 
viscous one, which make up that tissue. For example, consider 
a spring connected in series to the handle of a syringe. When a 
compressive force is applied, the spring instantly compresses, 
representing the elastic response of the tissue. The syringe 
plunger starts to displace and continues as it pushes fuid 
through the orifce. If the force is held constant, the plunger 
will continue to move, representing the viscous creep of the 
tissue. If the compressive force is applied slowly, the syringe 
handle offers little resistance. As the rate of force application 
increases, the resistance of the syringe to motion increases. This 
represents the increase in stiffness of the tissue at higher load-
ing rates. Simply put, the stiffness of the tissue depends upon 
the rate at which the load is applied.

A well-known example of loading rate dependence relates 
to the failure of ligament and bone. At low loading rates, the 
ligament is weaker than the bone and the ligament generally 
fails in the midsubstance. At higher loading rates, the liga-
ment becomes stiffer, and failure may occur by avulsion of the 
bony attachment of the ligament. Stress relaxation occurs if 
the applied force, instead of increasing, is held constant. As the 
fuid fows out of the syringe, without further movement of the 
plunger, the internal force decreases. These three properties—
creep, stress relaxation, and load rate dependence—make up 
the basic tissue viscoelastic properties. It should be appreciated 
that the model used in this discussion is a simple linear series 
model, for explanation purposes only. Nevertheless, more com-
plex models using combinations of these basic components 
have successfully described the observed properties of tissues. 
Another example of tissue viscoelasticity, besides tendon and 
other soft tissues, is found in trabecular bone (e.g., as found 
in vertebrae). In this case, the trabecular structure acts as the 
spring component, whereas forcing the interstitial fuid through 
the porous matrix as the trabeculae deform represents the vis-
cous component. Under higher loading rates, there is resistance 
to fow, increasing the internal pressure and therefore the stiff-
ness of the structure. These effects have been observed at high 
loading rates, such as during fracture (Fig. 1-11).34
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